Multi Unit Spectroscopic Explorer

Wizualizacja ukazująca trójwymiarowy obraz galaktyki uzyskany za pomocą MUSE (dane uzyskane podczas obserwacji galaktyki NGC 4650A)

Multi Unit Spectroscopic Explorer (MUSE) – instrument zainstalowany na należącym do ESO teleskopie głównym nr 1 Bardzo Dużego Teleskopu (VLT) w Obserwatorium Paranal w Chile na początku 2014 r.[1] MUSE jest najnowszym z instrumentów drugiej generacji zaprojektowanym dla VLT (pierwszymi dwoma były X-shooter i KMOS[2], a kolejnym będzie SPHERE[3]).

Budowa i działanie

Urządzenie składa się z 24 spektrografów[4], których zadaniem jest rozdzielanie światła na jego barwy składowe, w celu utworzenia zarówno obrazów, jak i widm wybranych obszarów nieba. W ten sposób powstają trójwymiarowe obrazy Wszechświata z widmem w każdym pikselu jako trzecim wymiarem. Metoda ta, zwana spektroskopią zintegrowanego pola (ang. integral field spectroscopy), pozwala astronomom na jednoczesne zbadanie własności różnych części obiektu takiego jak np. galaktyka, aby określić w jaki sposób rotuje oraz aby zmierzyć jego masę. Pozwala także na ustalenie składu chemicznego w różnych częściach obiektu oraz innych własności fizycznych.

Duży potencjał badawczy MUSE wynika z połączenia urządzenia fotografującego z pomiarowymi możliwościami spektrografu, korzystając jednocześnie z lepszej ostrości obrazów dostarczanych przez system optyki adaptatywnej[5] nazywanej "GALACSI"[6].

Instrument został zaprojektowany i wykonany przez konsorcjum MUSE – kierowane przez Centre de Recherche Astrophysique de Lyon z Francji oraz instytuty partnerskie z Niemiec, Szwajcarii, Holandii i Francji.

Cele naukowe

Instrument MUSE ma służyć przede wszystkim do badań wczesnego Wszechświata, mechanizmów powstawania galaktyk, ma także obserwować ruchy materii w sąsiednich galaktykach i określić ich skład chemiczny. Do innych zastosowań można zaliczyć m.in.: badanie planet i księżyców w Układzie Słonecznym, czy własności rejonów gwiazdotwórczych w Drodze Mlecznej[7].

Galeria

Przypisy

  1. A Multi Unit Spectroscopic Explorer - MUSE. [dostęp 2014-03-11]. (ang.).
  2. K-band Multi-Object Spectrograph - KMOS. [dostęp 2014-03-11]. (ang.).
  3. Spectro-Polarimetric High-contrast Exoplanet Research - SPHERE. [dostęp 2014-03-12]. (ang.).
  4. Instrument Concept. [dostęp 2014-03-12]. (ang.).
  5. Adaptive Optics. [dostęp 2014-03-11]. (ang.).
  6. GALACSI. [dostęp 2014-03-11]. (ang.).
  7. Science objectives. [dostęp 2014-03-11]. (ang.).

Linki zewnętrzne

Media użyte na tej stronie

MUSE views the unusual galaxy NGC 4650A.ogg
Autor: ESO/MUSE consortium/R. Bacon/L. Calçada, Licencja: CC BY 4.0
This view shows how the new MUSE instrument on ESO’s Very Large Telescope gives a three-dimensional view of a distant galaxy. For each part of the galaxy the light has been split up into its component colours — revealing not only the motions of different parts of the galaxy but also clues to its chemical composition and other properties. This picture is based on data on the polar ring galaxy NGC 4650A that were obtained soon after the instrument achieved first light in early 2014. Here just the parts of the data that show the glow from hydrogen gas are shown. Because the disc around the galaxy is rotating some parts are moving away from the Earth at different velocities to other parts, so the glow appears at different wavelengths and the motions of the gas are revealed in great detail.
MUSE views the strange galaxy NGC 4650A.jpg
Autor: ESO/MUSE consortium/R. Bacon/L. Calçada, Licencja: CC BY 4.0
This view shows how the new MUSE instrument on ESO’s Very Large Telescope gives a innovative three-dimensional depiction of a distant galaxy. For each part of the galaxy the light has been split up into its component colours — revealing not only the motions of different parts of the galaxy but also clues to its chemical composition and other properties.

During the subsequent analysis the astronomer can move through the data and study different views of the object at different wavelengths, just like tuning a television to different channels at different frequencies.

This picture is based on data on the polar ring galaxy NGC 4650A that were obtained soon after the instrument achieved first light in early 2014.
MUSE views the Orion Nebula.ogg
Autor: ESO/MUSE consortium/R. Bacon/L. Calçada, Licencja: CC BY 4.0
This view shows how the new MUSE instrument on ESO’s Very Large Telescope gives a three-dimensional view of a distant galaxy. For each part of the galaxy the light has been split up into its component colours — revealing not only the motions of different parts of the galaxy but also clues to its chemical composition and other properties. At certain wavelengths the emission from the rotating disc around the galaxy is clearly seens, as well as the different velocities of different parts of the disc.

During the subsequent analysis the astronomer can move through the data and study different views of the object at different wavelengths, just like tuning a television to different channels at different frequencies. In this sequence the slices at different wavelengths are presented in sequence and the speed is adjusted to highlight the glow from star formation regions in the disc.

This picture is based on data on the polar ring galaxy NGC 4650A that were obtained soon after the instrument achieved first light in early 2014.
MUSE — Running through the 3D data of NGC 4650A.ogg
Autor: ESO/MUSE consortium/R. Bacon, Licencja: CC BY 4.0
This view shows how the new MUSE instrument on ESO’s Very Large Telescope gives a three-dimensional view of a distant galaxy. For each part of the galaxy the light has been split up into its component colours — revealing not only the motions of different parts of the galaxy but also clues to its chemical composition and other properties. At certain wavelengths the emission from the rotating disc around the galaxy is clearly seens, as well as the different velocities of different parts of the disc.

During the subsequent analysis the astronomer can move through the data and study different views of the object at different wavelengths, just like tuning a television to different channels at different frequencies. In this sequence the slices at different wavelengths are presented in sequence and the speed is adjusted to highlight the glow from star formation regions in the disc.

This picture is based on data on the polar ring galaxy NGC 4650A that were obtained soon after the instrument achieved first light in early 2014.
MUSE video of the transit of Europa across the disc of Jupiter.ogg
Autor: ESO/MUSE consortium/R. Bacon/L. Calçada, Licencja: CC BY 4.0
This video sequence was created from many separate MUSE observations of the planet Jupiter during a transit of the moon Europe and its shadow. To make the pictures for this time-lapse movie selected regions of the spectrum were extracted to form a set of colour images. They were selected to correspond to the wavelengths associated with methane absorption in Jupiter's atmosphere. This enhances the contrast with respect to Europa, which does not have this absorption and seems thus much brighter than in a normal image. The same process also enhances the contrast of the polar rings. Although these images are impressive they only represent a tiny fraction of the information in the full MUSE three-dimensional dataset.
MUSE — Close up of the H-alpha line in the strange galaxy NGC 4650A.ogg
Autor: ESO/MUSE consortium/R. Bacon/L. Calçada, Licencja: CC BY 4.0
This view shows how the new MUSE instrument on ESO’s Very Large Telescope gives a three-dimensional depiction of a distant galaxy. For each part of the galaxy the light has been split up into its component colours — revealing not only the motions of different parts of the galaxy but also clues to its chemical composition and other properties. At certain wavelengths the emission from the rotating disc around the galaxy is clearly seen, as well as the different velocities of different parts of the disc.

During the subsequent analysis the astronomer can move through the data and study different views of the object at different wavelengths, just like tuning a television to different channels at different frequencies. In this sequence the speed is adjusted to highlight the glow from star formation regions in the disc.

This picture is based on data on the polar ring galaxy NGC 4650A that were obtained soon after the instrument achieved first light in early 2014.