Operator d’Alemberta

Operator d’Alemberta (dalambercjan) – operator różniczkowy II rzędu definiowany w czterowymiarowej czasoprzestrzeni Minkowskiego. Jest odpowiednikiem operatora Laplace’a definiowanego w 3-wymiarowej przestrzeni Euklidesowej.

Operator ten jest oznaczany symbolem „kwadrat” (rzadziej używane jest oznaczenie ). Wykorzystywany m.in. do zwięzłego zapisu równania falowego klasycznej elektrodynamiki czy równania Kleina-Gordona elektrodynamiki kwantowej.

Przyjmując sygnaturę metryki czasoprzestrzeni, operator ten wyrazimy za pomocą jego składowych.

Współrzędne

We współrzędnych operator d’Alemberta ma postać[1][2][3]

gdzie:

operator Laplace’a,
prędkość światła w próżni.

Po rozpisaniu operatora Laplace’a otrzyma się

Współrzędne

We współrzędnych mamy:

Zapis skrócony

Operator d’Alemberta zapisuje się za pomocą iloczynu skalarnego czterogradientu – przy czym iloczyn skalarny w 4-wymiarowej czasoprzestrzeni definiuje się jako sumę iloczynów współrzędnych kowariantnych i kontrawariantnych, tj.

gdzie:

– składowe kowariantne 4-gradientu,
– składowe kontrawariantne 4-gradientu.

Wstawiając współrzędne, otrzyma się

przy czym

Zastosowania

Teoria drgań

Równanie falowe np. dla małych drgań (poziomej) struny

gdzie:

– przemieszczenie (w pionie) struny od położenia równowagi,
– współrzędna położenia punktu na strunie,
– czas.

Elektrodynamika klasyczna

Równanie falowe fali elektromagnetycznej w próżni

gdzie czteropotencjał pola elektromagnetycznego.

Elektrodynamika kwantowa

Równanie Kleina-Gordona

Zobacz też

1. Operatory różniczkowe 4-wymiarowej czasoprzestrzeni Minkowskiego

2. Operatory różniczkowe 3-wymiarowej przestrzeni euklidesowej

3. Operatory różniczkowe w n-wymiarowej rozmaitości pseudoriemannowskiej

Przypisy

  1. Dalambercjan, [w:] Encyklopedia PWN [online] [dostęp 2021-07-29].
  2. Encyclopedia of Mathematics: D’Alembert operator (ang.). encyclopediaofmath.org. [dostęp 2016-11-12].Sprawdź autora:1.
  3. Eric W. Weisstein, d’Alembertian, [w:] MathWorld [online], Wolfram Research [dostęp 2016-11-12] (ang.).

Bibliografia