Złoto

Złoto
platyna ← złoto → rtęć
Wygląd
żółty[4][5]
Kryształy złota o czystości 99,99% wytworzone metodą reakcji transportu chemicznego w atmosferze chloru
Kryształy złota o czystości 99,99% wytworzone metodą reakcji transportu chemicznego w atmosferze chloru
Widmo emisyjne złota
Widmo emisyjne złota
Ogólne informacje
Nazwa, symbol, l.a.

złoto, Au, 79
(łac. aurum)

Grupa, okres, blok

11, 6, d

Stopień utlenienia

−I, I, III, V

Właściwości metaliczne

metal przejściowy

Właściwości tlenków

amfoteryczne

Masa atomowa

196,97 ± 0,01[a][6]

Stan skupienia

stały

Gęstość

19300 kg/m³

Temperatura topnienia

1064,18 °C[1]

Temperatura wrzenia

2856 °C[1]

Numer CAS

7440-57-5

PubChem

23985

Jeżeli nie podano inaczej, dane dotyczą
warunków normalnych (0 °C, 1013,25 hPa)

Złoto (Au, łac. aurum) – pierwiastek chemiczny o liczbie atomowej 79. Złoto jest ciężkim, miękkim i błyszczącym metalem, najbardziej kowalnym i ciągliwym spośród wszystkich znanych metali. Czyste złoto ma jasnożółty kolor i wyraźny połysk, nie utlenia się w wodzie czy powietrzu. Chemicznie złoto należy do metali przejściowych i pierwiastków grupy 11. Z wyjątkiem helowców (tzw. gazów szlachetnych) złoto jest najmniej reaktywnym pierwiastkiem. Złoto długo przed okresem spisanej historii było drogocennym i poszukiwanym metalem szlachetnym używanym w biciu monet, jubilerstwie, sztuce i zdobieniach.

Złoto jest odporne na poszczególne kwasy, ale roztwarza się w wodzie królewskiej (łac. aqua regia, nazwana tak ze względu na to, że rozpuszcza właśnie złoto – metal kojarzony z władzą królewską). Roztwarza się również w zasadowych roztworach cyjanków, które były używane do wydobywania złota. Złoto rozpuszcza się również w rtęci, tworząc amalgamat. Złoto jest nierozpuszczalne w kwasie azotowym, który roztwarza srebro i inne metale, co przez długi czas było wykorzystywane jako próba na obecność złota (np. w monetach).

Metal rodzimy występuje jako samorodki lub ziarna w skałach litych, żyłach i osadach aluwialnych. Mniej powszechnie występuje jako związki złota, zazwyczaj z tellurem. Parytet złota był najpowszechniejszą podstawą polityki pieniężnej w historii człowieka, powszechnie zastąpioną w XX wieku przez pieniądz fiducjarny. Szacuje się, że do końca 2017 roku, w całej historii zostało wydobytych 190 tys. ton złota[7]. Odpowiada to objętości 9800 m³ lub sześcianowi o krawędzi 21,4 m. Światowa konsumpcja wydobywanego złota w 50% zużywana jest w jubilerstwie, w 40% w różnych inwestycjach, a 10% w zastosowaniach przemysłowych[8]. Złoża złota pozostałe pod ziemią oceniane są na 54 tys. ton. Przy aktualnym poziomie wydobycia złoża te wystarczyłyby na ok. 15–20 lat[7].

Poza szeroko rozpowszechnionymi wyżej wymienionymi zastosowaniami, złoto stosuje się również w stomatologii, elektronice i innych dziedzinach, w tym nawet w przemyśle spożywczym.

Historia

Złoty kapelusz z epoki brązu
Jazon wracający ze złotym runem (Krater z Apulii w stylu czerwonofigurowym, ok. 340–330 p.n.e.)

Złoto jest znane i używane przez rzemieślników co najmniej od chalkolitu. Złote wyroby na Bałkanach pojawiają się w wykopaliskach archeologicznych datowanych na IV milenium p.n.e., takich jak nekropolia Warny. Złote artefakty, takie jak złote kapelusze czy dysk z Nebry, pojawiały się w Europie Środkowej od drugiego tysiąclecia p.n.e. w epoce brązu[9].

Egipskie hieroglify z okresu około 2600 lat p.n.e. opisują, że król Mitannii Tuszratta miał złota „więcej, niż brudu” w Egipcie[10]. Egipt, a szczególnie Nubia, miały wystarczające zasoby, by uczynić je obszarami, gdzie wydobywało się najwięcej złota przez długi okres historii. Najstarszą znaną mapą jest mapa znana jako papirusowa mapa z Turynu (ok. 1100 lat p.n.e.)[11], która pokazuje plan kopalni złota w Nubii, wraz z ukazaniem lokalnej geologii. Prymitywne metody wydobycia, włączając w to technikę podkładania ognia, zostały opisane przez Strabona i Diodora Sycylijskiego. W okresie Starożytnego Egiptu wydobywano około jednej tony złota rocznie[12]. Duże kopalnie złota były również w obszarze Morza Czerwonego, znajdujące się w dzisiejszej Arabii Saudyjskiej, między innymi kopalnie Mahd adh Dhahab („kolebka złota”), w której, w okresie panowania króla Salomona (961–922 p.n.e.), było wydobywane złoto, srebro i miedź[13].

Mit o złotym runie może nawiązywać do używania w starożytności owczych skór do wychwytywania złotego pyłu ze złóż okruchowych. Złoto jest często wspominane w Starym Testamencie, rozpoczynając od Księgi Rodzaju 2, 11 (o Havilah) oraz jest jednym z darów mędrców (Trzech Królów) w pierwszych rozdziałach Nowego Testamentu, w Ewangelii według Mateusza. Apokalipsa świętego Jana 21, 21 opisuje miasto Nowe Jeruzalem jako mające rynek Miasta to czyste złoto jak szkło przeźroczyste[14].

Południowo-wschodni obszar Morza Czarnego był znany ze swojego złota. Wydobycie złota datuje się tam od czasu króla Midasa i tamtejsze złoto prawdopodobnie było wykorzystane w pierwszym na świecie biciu monet w Lidii, tzw. „lwów lidyjskich[15] około 610 r. p.n.e. Od VI do V wieku p.n.e. państwo Chu miało w obiegu monetę Ying Yuan (chiń. 郢爰)[16].

W metalurgii Starożytnego Rzymu zostały wprowadzone nowe metody wydobycia złota na dużą skalę, wykorzystujące urabianie hydrauliczne, od 25 roku p.n.e. wykorzystywane w Hiszpanii, a od 106 roku n.e. w Dacji. Do największych kopalń należały te w Las Médulas, w prowincji León, gdzie siedem długich akweduktów pozwalało przemywać duże złoża aluwialne. Dużymi kopalniami były także te położone w Roşia Montană w Transylwanii (Siedmiogród), które do niedawna były wciąż eksploatowane przy użyciu metod odkrywkowych. Również były wykorzystywane mniejsze złoża w Brytanii, takie jak złoża okruchowe czy skalne w Dolaucothi. Różne używane metody wydobycia złota zostały opisane przez Pliniusza Starszego w encyklopedii Historia Naturalis, napisanej pod koniec pierwszego wieku naszej ery. W okresie imperium rzymskiego produkcja złota osiągała 5–10 ton rocznie[12].

Imperium Mali w Afryce słynęło w Starym Świecie ze swojego bogactwa w złoto. Mansa Musa, władca imperium (1312–1337) stał się sławny w całym Starym Świecie ze względu na jego hadżdż do Mekki w 1324. Kiedy przechodził przez Kair w lipcu 1324 roku, towarzyszyła mu podobno karawana składająca się z ponad tysiąca ludzi i około setki wielbłądów. Wydał tyle złota, że obniżyło to jego cenę w Egipcie na ponad 10 lat[17]. Szacuje się, że obszary dzisiejszej Ghany dostarczały 5-8 ton złota rocznie[12].

Złoto w Egipcie miało wysoką cenę zanim przybyli w tym roku. Mithqal nie kosztował mniej niż 25 dirham, a zazwyczaj powyżej, ale od tamtego czasu jego wartość spadła i złoto staniało, a pozostawało tanie do tej pory. Mithqal nie przekraczał 22 dirham lub kosztował nawet mniej. To był stan rzeczy od dwunastu lat do dzisiaj z powodu dużej ilości złota, którą przywieźli do Egiptu i tutaj je wydali [...]

Chihab Al-Umari[18]

Europejska eksploracja Ameryki była w dużej mierze napędzana doniesieniami o złotych ozdobach obficie pokazywanych przez Indian, szczególnie w Ameryce Centralnej, Peru, Ekwadorze i Kolumbii. Aztecy dosłownie traktowali złoto jako produkt bogów, nazywając je „boskimi odchodami” (nah. teocuitlatl)[19]. Jednakże dla ludów tubylczych Ameryki Północnej złoto było bezużyteczne, większą wartość widzieli w innych minerałach, które były bezpośrednio związane z ich zastosowaniem, takie jak obsydian, krzemień i łupek[20]. Szacuje się, że eksplorowane obszary Ameryki Południowej łącznie z afrykańskim Złotym Wybrzeżem w XVI dostarczały około 10–12 ton złota rocznie[12].

Chociaż cena metali z grupy platynowców może być znacznie wyższa, złoto przez długi czas było uważane za najbardziej pożądany metal szlachetny, a jego wartość w historii była używana jako standard dla wielu walut (parytet złota). Złoto było używane jako symbol czystości, wartości, królewskości, i szczególnie ról, które łączyły te cechy. Złoto jako symbol bogactwa i prestiżu zostało wyśmiane przez Thomasa More’a w traktacie Utopia. Na tej wymyślonej wyspie złoto było tak powszechne, że było używane do robienia łańcuchów dla niewolników, zastawy stołowej i desek klozetowych. Kiedy przybyli ambasadorzy z innych krajów, ubrani w złoto i odznaki, Utopianie wzięli ich za zwykłe sługi, składając hołdy najskromniej ubranym spośród ich grupy.

Istnieje archaiczna tradycja gryzienia złota w celu sprawdzenia jego autentyczności. Chociaż nie jest to profesjonalna metoda badania złota, to „test gryzienia” nadaje się do oceny złota ponieważ złoto jest miękkim metalem (do 3 w skali Mohsa). Im czystsze złoto tym łatwiej je odkształcić. Malowany ołów może oszukać ten test ponieważ ołów jest bardziej miękki niż złoto (istnieje małe ryzyko zachorowania na ołowicę na skutek przyjęcia dawki ołowiu).

Jednym z głównych celów alchemików było przekształcenie różnych substancji, głównie ołowiu, w złoto. Miało odbyć się to w wyniku kontaktu danej substancji z mityczną substancją zwaną kamieniem filozoficznym. Chociaż im nigdy się to nie udało, alchemicy rozpowszechnili zainteresowanie tym co można robić z substancjami, przez co położyli podwaliny pod naukę, którą dzisiaj nazywamy chemią. Alchemicznym symbolem złota był okrąg z punktem w środku (☉), który był również symbolem astrologicznym i starożytnym chińskim znakiem oznaczającym słońce. Obecnie otrzymywanie złota z innych substancji jest możliwe m.in. przez przekształcenie rtęci na drodze wychwytu neutronu przez 196Hg.

Złoto w starożytności było stosunkowo łatwe do uzyskania z kopalnianych warstw geologicznych. W XIX wieku, wszędzie gdzie zostawały odkryte większe złoża złota wybuchały gorączki złota. Pierwszym udokumentowanym odkryciem złota w Stanach Zjednoczonych było odkrycie złota w Reed Gold Mine w Midland w Karolinie Północnej w 1803[21]. Jednakże 90% otrzymanego złota zostało wydobyte od 1848 roku, kiedy to w Kalifornii wybuchła gorączka złota[12]. W 1851 roku, w samej tylko Kalifornii, wydobyto 77 ton złota. Światowa produkcja złota w tym okresie wzrosła do około 280 ton (1852)[12].

Właściwości

Właściwości atomowe

Atom złota zbudowany jest z 79 protonów i 90–126 neutronów tworzących jądro oraz 79 elektronów (w stanie podstawowym) o konfiguracji 1s22s22p63s23p63d104s24p64d104f145s25p65d106s1 (zapis skrócony: [Xe]4f145d106s1).

Izotopy

Złoto ma jeden trwały izotop, 197Au, będącym jednocześnie jedynym naturalnie występującym izotopem złota. Znanych jest kilkadziesiąt radioizotopów otrzymanych syntetycznie, których masy atomowe są w zakresie od 126 do 205. Najstabilniejszym spośród nich jest 195Au, który ma czas połowicznego rozpadu, T½ równy 186,1 dni. Najmniej stabilnym jest 171Au, o T½ = 30 µs, który rozpada się w wyniku emisji protonu. Większość radioizotopów złota o masach poniżej 197 u ulega rozpadowi w wyniku kombinacji emisji protonu, rozpadu α i rozpadu β+. Wyjątkami od reguły są 195Au, który rozpada się przez wychwyt elektronu oraz 196Au, który w 93% rozpada się przez wychwyt elektronu oraz w 7% przez rozpad β+[22].

Izomery

Zostały opisane przynajmniej 32 izomery jądrowe o zakresie mas atomowych 170 do 200. W przedziale tym tylko 178Au, 180Au, 181Au, 182Au i 188Au nie mają izomerów. Najstabilniejszym jest 198Au o T½ = 2,27 dnia. Najmniej stabilnym jest 177Au o T½ = 7 ns. 184Au ma trzy ścieżki rozpadu; rozpad β+, przejście izomeryczne i rozpad α[22].

Właściwości fizyczne

Złoto jest najbardziej kowalne spośród wszystkich metali; jeden gram złota może być rozbity na arkusz o powierzchni 1 m². Płatek złota może być rozbity do tego stopnia, że staje się półprzezroczysty. Przechodzące przez taki płatek światło jest zielono-niebieskie, ponieważ złoto silnie odbija żółte i czerwone składowe długości światła[23][24]. Takie półprzezroczyste arkusze również silnie odbijają podczerwień, co czyni je użyteczne w wytwarzaniu osłon przed promieniowaniem podczerwonym (cieplnym) w kombinezonach żaroodpornych i osłonach przeciwsłonecznych w skafandrach astronautów[25]. Złoto z łatwością tworzy stopy z innymi metalami. Przy wytwarzaniu tych stopów można zmieniać ich twardość i inne właściwości metalurgiczne, od temperatury topnienia do koloru (patrz poniżej)[26]. Złoto charakteryzuje się bardzo dobrą przewodnością cieplną i elektryczną, co znajduje zastosowanie w elektronice i elektryce. Złoto jest metalem o wysokiej gęstości 19,3 g/cm³, dla porównania gęstość ołowiu wynosi 11,34 g/cm³, a najcięższego pierwiastka, osmu 22,61 g/cm³.

Złoto może zawierać izostrukturalne domieszki innych pierwiastków. Tego typu stopy mogą występować naturalnie lub być wytwarzane sztucznie. Mogą to być domieszki np.:

Kolor

Podstawy fizyczne

Podczas gdy większość metali w postaci zwartej jest szara lub srebrno-biała, złoto jest żółte. Jest to wynikiem zbliżenia pasma energetycznego w pełni zapełnionego orbitalu 3d (3d10) i poziomu Fermiego orbitalu 6s, zapełnionego jedynie w połowie (6s1). Efekty relatywistyczne sprawiają, że orbital 3d10 ulega rozszerzeniu, a 6s1 skurczeniu, a w efekcie przerwa energetyczna, której wielkość odpowiada za kolor pierwiastka, wynosi jedynie 2,3 eV. Wartość ta została ustalona doświadczalnie i jest zgodna z obliczeniami, pod warunkiem, że uwzględniają one efekty relatywistyczne. Taka energia oznacza silną absorpcję światła niebieskiego i fioletowego oraz odbicie światła żółtego i czerwonego, co nadaje złotu charakterystyczną barwę. Dla srebra, pomimo bardzo zbliżonego układu klasycznych pasm elektronowych, efekty relatywistyczne są znacznie słabsze i energia przejścia wynosi 3,5 eV, co lokuje absorpcję światła w rejonie ultrafioletu, co w efekcie powoduje odbijanie całego zakresu światła widzialnego i srebrny kolor metalu. Problem koloru złota jest jednak bardzo złożony i brak jest pełnej charakterystyki obliczeniowej tego zjawiska[27][28][29].

Barwa stopów złota
Diagram trójkątny – Różne kolory stopów Ag-Au-Cu

Powszechne stopy kolorowego złota, takie jak różowe złoto, mogą być wytworzone poprzez dodawanie różnych ilości miedzi i srebra, jak pokazuje to diagram trójkątny. Stopy zawierające pallad i nikiel tworzą tzw. „białe złoto”, które często jest wykorzystywane w jubilerstwie. Mniej powszechnymi są stopy złota zawierające dodatki manganu, glinu, żelaza, irydu i innych pierwiastków[30], które nadają złotu bardziej niezwykłe kolory, jak na przykład niebieski[31][24].

Właściwości chemiczne

Bryłki złota

Złoto jest metalem szlachetnym o wyjątkowo dużej odporności chemicznej, znacznie większej niż poprzedzające go w grupie 11 miedź i srebro. W przeciwieństwie do nich, na powietrzu nie ulega ściemnieniu. Jest też odporne na działanie większości czynników korozyjnych, dzięki czemu idealnie nadaje się do produkcji monet, biżuterii i pokryć ochronnych bardziej reaktywnych metali.

Ulega działaniu bardzo agresywnych czynników utleniających, utleniając się od razu do związków AuIII, co wyraźnie odróżnia je od miedzi i srebra, dla których tak wysoki stopień utlenienia jest niezwykle rzadki (znany jest AgF3)[29]. W ten sposób roztwarza się w wodzie królewskiej, w kwasie solnym w obecności ozonu oraz w gorącym kwasie selenowym[32]:

2Au + 6H2SeO4Au2(SeO4)3 + 3H2SeO3 + 3H2O

Podobnie ulega też działaniu chloru i bromu, natomiast fluor utlenia złoto do związków AuV[29].

Złoto jest roztwarzane także w zasadowych roztworach cyjanków (w obecności utleniaczy, np. tlenu) tworząc kompleksy cyjanozłocianowe:

4Au + 8KCN + O2 + 2H2O4K[Au(CN)2] + 4KOH

Proces ten wykorzystywany jest do wydobywania złota ze złóż.

Ponadto złoto rozpuszcza się w rtęci tworząc amalgamat złota.

Wysoka odporność chemiczna złota wynika z wyjątkowo dużego potencjału redoks Au0/Au+ oraz wysokiego pierwszego potencjału jonizacyjnego wynoszącego 9,225 eV (dla porównania dla srebra jest to 7,576 eV). Te wyjątkowe właściwości elektronowe, a co za tym idzie, właściwości chemiczne, wynikają – podobnie jak kolor złota – w dużej mierze z efektów relatywistycznych[29].

Najpowszechniejszymi stopniami utlenienia złota jest I i III. Znane są również związki na –I stopniu utlenienia (złotek cezu) i na V (fluorek złota(V)[33]).

Jony złota znajdujące się w roztworze, do którego doda się jakiegokolwiek innego metalu będącego reduktorem, łatwo ulegają redukcji i strąceniu w postaci metalicznego złota. Dodany metal utlenia się i rozpuszcza zastępując w roztworze złoto, które może strącić się w postaci osadu.

Wysokiej czystości metaliczne złoto nie ma smaku i zapachu, co zawdzięcza swojej wysokiej odporności na korozję (jony metali są odpowiedzialne za ich smak)[34].

Występowanie

Ta 4,85 kg bryłka złota została znaleziona w południowej Pustyni Kalifornijskiej przez prywatnego poszukiwacza przy użyciu wykrywacza metalu
Z bloku rudy złota ważącego około 860 kg może zostać wydobytych 30 g złota. Kopalnia złota Toi, Japonia.
(c) Matt Affolter of a sample from Erich Peterson at en.wikipedia, CC BY-SA 3.0
Hematyt z ziarenkami złota pozostały po utlenieniu pirytu z domieszką złota.

Liczba atomowa złota 79 czyni je jednym z najcięższych pierwiastków występujących naturalnie. Jak wszystkie pierwiastki o liczbie atomowej większej niż żelazo, uważa się, że złoto powstaje w wyniku procesu nukleosyntezy w supernowych. Ich eksplozje rozpraszają bogaty w metale pył (w tym metale ciężkie), z których formują się systemy planetarne, takie jak np. Układ Słoneczny[35]. Ziemia w czasie formowania się ok. 4,5 miliarda lat temu składała się z płynnej magmy. W czasie procesu stygnięcia, najcięższe pierwiastki, w tym złoto, tonęły w jej wnętrzu. Złoto obecnie znajdujące się w płaszczu i skorupie ziemskiej dotarło na Ziemię znacznie później, w okresie tzw. Wielkiego Bombardowania, kiedy w Ziemię uderzył meteoryt o znacznej masie (do 1% masy Ziemi) zawierający między innymi złoto[36].

Występujące na Ziemi złoto elementarne najczęściej występuje w postaci roztworu stałego złota ze srebrem, tj. stopu złota ze srebrem. Takie stopy mają zazwyczaj zawartość srebra 8–10%. Elektrum jest postacią pierwiastkowego złota o zawartości srebra od 18 do 36%. Jego kolor zmienia się od złoto-srebrnego do srebrnego, w zależności od zawartości srebra. Im więcej w nim srebra tym niższa gęstość.

Złoto znajdowane jest w rudach złożonych ze skał mających bardzo małe lub mikroskopijne ilości złota. Takie rudy złota często są znajdowane wraz z kwarcem lub siarczkami, takimi jak „złoto głupców”, którym jest piryt. Złoża zawierające takie rudy nazywane są złożami żyłowymi. Złoto rodzime można znaleźć także w postaci płatków, ziaren lub większych bryłek (samorodków), które wyerodowały ze skał i znalazły się w złożach aluwialnych, zwanych złożami okruchowymi. Większe ilości wolnego złota zazwyczaj znajdują się na wierzchu żyły złotonośnej, co spowodowane jest utlenianiem towarzyszących mu minerałów na skutek wietrzenia i wymywania złotego pyłu przez strumienie i rzeki, gdzie następuje jego nagromadzenie się. W ten sposób powstają złotonośne piaski rzeczne.

Złoto czasami występuje w połączeniach z tellurem w minerałach takich jak kalaweryt, krenneryt, nagyagit, petzyt i sylvanit oraz jako bizmutek maldonit (Au2Bi) i antymonek aurostibit (AuSb2). Złoto występuje rzadko także w stopach z miedzią, ołowiem i rtęcią jako minerały: auricupryd (Cu3Au), novodneprit (AuPb3) i weishanit ((Au, Ag)3Hg2).

Badania z 2004 roku sugerują, że mikroby czasami mogą odgrywać znaczącą rolę w tworzeniu złóż złota, przemieszczając i strącając złoto, tworząc ziarenka i bryłki, które odkładają się w złożach aluwialnych[37]. Potwierdzają to badania naukowców z Uniwersytetu Stanowego w Michigan, którzy odkryli bakterię, która potrafi rozkładać związki złota na czysty kruszec[38][39][40].

Światowe oceany zawierają pewne ilości złota. Zmierzone stężenia złota w Atlantyku i Północno-wschodnim Pacyfiku wynoszą 50–150 fmol/l lub 30 części na biliard (30×10−15). Ogólnie stężenia złota w Atlantyku i Pacyfiku są zbliżone. Głębokie wody morza Śródziemnego zawierają większe stężenia Au (100–150 fmol/l), co jest związane z wiatrem nawiewającym pyły znad lądu oraz licznymi rzekami wpadającymi do morza. Przy stężeniu 10×10−15 wszystkie oceany zawierałyby 15 000 ton złota[41].

Wiele osób twierdziło, że mogą na ekonomiczną skalę odzyskiwać złoto z wody morskiej, lecz jak dotychczas wszyscy mylili się lub byli oszustami. Tak zwany wielebny Prescott Jernegan, prowadził w latach 90. XIX wieku swój szwindel, w którym uzyskiwał złoto z wody morskiej[42]. Brytyjski oszust prowadził ten sam przekręt w Anglii, na początku XX wieku[42]. Fritz Haber (odkrywca procesu Habera) przeprowadził badania nad uzyskiwaniem złota z wody morskiej, aby pomóc Niemcom zapłacić odszkodowania po I wojnie światowej[43]. Opierając się o opublikowane wcześniej wartości od 2 do 64 ppb złota w wodzie morskiej uważał, że taka ekstrakcja ma sens ekonomiczny. Po przeanalizowaniu 4000 próbek, otrzymując średnią 0,004 ppb, stało się oczywiste, że ekstrakcja nie będzie możliwa i zakończył swój projekt[44]. Do tej pory nie ma żadnego mechanizmu ekstrakcji złota z wody morskiej, który miałby sens ekonomiczny. Synteza złota (synteza na drodze przemian jądrowych) nie jest ekonomicznie opłacalna i jest mało prawdopodobne, aby stała się opłacalna w najbliższej przyszłości.

Złoża

Tworzy dwa podstawowe typy złóż:

Miejsca występowania:

W Polsce wydobywa się złoto jedynie ze złóż rud miedzi (w których złoto stanowi niewielką domieszkę) w rejonie Lubina, Polkowic, Rudnej[45]. Produkcja złota odbywa się w hucie miedzi w Głogowie. Zarówno kopalnie, jak i huta należą do KGHM. Wielkość produkcji w 2015 wyniosła 2,7 tony[46], w 2016 r. 3,54 tony, a w 2017 r. 3,649 tony[47].

Wystąpienia złota współcześnie nieeksploatowane:

Kopalnie

Złoto jest wydobywane w kopalniach głębinowych w strefie zimnej, tj. Rosja, USA, RPA oraz w kopalniach odkrywkowych w strefie gorącej: Afryka, Azja południowo-wschodnia, Ameryka Południowa. Dodatkowo pojawia się jako domieszka w wydobyciu innych surowców, jednakże ilość wydobytego w ten sposób złota jest stosunkowo niewielka[49].

Państwa wydobywające najwięcej złota (2019)[50]
PaństwoWydobycie
(w tonach)
Rezerwy
(w tonach)
 Chiny4202000
 Australia33010 000
 Rosja3105300
 Stany Zjednoczone2003000
 Kanada1801900
 Indonezja1602600
 Peru1302100
 Ghana1301000
 Meksyk1101400
 Uzbekistan1001800
 Południowa Afryka903200
 Brazylia852400
 Papua-Nowa Gwinea701000
 Chile503900
Inne państwa80010 000
Łącznie na świecie330050 000


Zastosowanie

Jubilerstwo

Złoty naszyjnik z Mochica przedstawiający kocie głowy. Kolekcja muzeum Larco. Lima, Peru

Z powodu miękkości czystego (24 karaty, próba 1000) złota, do zastosowań w jubilerstwie, są tworzone stopy z mniej szlachetnymi metalami, zmieniając jego twardość, ciągliwość, temperaturę topnienia, kolor i inne właściwości. Stopy o mniejszej ilości karatów, zazwyczaj 22 ct, 18 ct, 14 ct lub 10 ct, zawierają większy procent miedzi. 18-karatowe złoto zawierające 25% miedzi stosowano w antyku i rosyjskiej biżuterii i ma wyraźny, choć nie dominujący, odcień miedzi, tworząc różowe złoto. 14-karatowy stop złota z miedzią ma niemal identyczny kolor do pewnych brązów, i oba często są używane do wyrobu odznak policyjnych, medali i innych ozdób. Niebieskie złoto może być wytworzone poprzez stopienie złota z żelazem, a fioletowe poprzez stopienie z glinem, chociaż są stosunkowo rzadko wykonywane, z wyjątkiem specjalnej biżuterii. Niebieskie złoto jest bardziej kruche i stąd praca i wyrób biżuterii z tym złotem jest trudniejsza. 14 i 18-karatowe stopy złota ze srebrem wydają się zielono-żółte, stąd są określane jako zielone złoto. Białe stopy złota mogą być zrobione z palladem lub niklem. Białe 18-karatowe złoto, zawierające 17,3% niklu, 5,5% cynku i 2,2% miedzi ma srebrną barwę. Ze względu na toksyczność niklu produkcja takich stopów jest regulowana w Europie prawem. Alternatywne białe stopy złota są wytwarzane w oparciu o pallad, srebro i inne białe metale[26], lecz stopy oparte na palladzie są wyraźnie droższe od tych opartych na niklu. Wysokokaratowe białe złoto jest znacznie bardziej odporne na korozję niż czyste srebro czy srebro sterling (o min. próbie 925).

Japońskie rzemiosło mokume-gane wykorzystuje różnice kolorów pomiędzy laminowanymi kolorowymi stopami złota, tworząc dekoracyjny efekt przypominający słoje drzewa.

Przemysł

Największy na świecie blok złota ma masę 250 kg (Muzeum Złota Toi, Japonia).
Bryłka złota o średnicy 5 mm może być rozbita za pomocą młotkowania na arkusz o wymiarach około 0,5 m² (Muzeum Złota Toi)
  • Złoty stop lutowniczy jest używany w łączeniu elementów złotej biżuterii za pomocą lutowania wysokotemperaturowego lub lutowania twardego. Jeśli wykonywana biżuteria jest klasy probierniczej, to lut musi mieć tę samą liczbę karatów co wyrób, stąd stopy lutownicze są wytwarzane by zgadzały się ze standardami żółtego i białego złota. Lut złota występuje zazwyczaj w trzech zakresach temperatur, określanych jako miękkie, średnie i twarde. Dzięki użyciu najpierw wysokotemperaturowego lutu, następnie stopów o coraz niższych temperaturach topnienia złotnicy mogą tworzyć skomplikowane przedmioty z użyciem kilku oddzielnych połączeń.
  • Ze złota można wytwarzać nici używane do haftu.
  • Złoto używane jako barwnik szkła tworzy głęboki, intensywny czerwony kolor w szkle rubinowym.
  • Ze względu na fakt, że złoto dobrze odbija promieniowanie elektromagnetyczne, takie jak podczerwień i światło widzialne i fale radiowe, używane jest jako pokrycie ochronne w sztucznych satelitach, w osłonach kombinezonów chroniących przed silnym promieniowaniem podczerwonym i broni elektronicznej, np. w samolotach takich jak EA-6B Prowler.
  • Złoto jest wykorzystywane jako warstwa odbijająca w wysokiej jakości płytach CD.
  • Ze względu na swoją zdolność rozpraszania ciepła, złota folia jest użyta w silnikach McLarena, w modelu F1[51].
  • Ze złota można wytworzyć na tyle cienką warstwę, że staje się ona przezroczysta. Takie warstwy są używane w szybach niektórych kokpitów samolotów, co pomocne jest w ich odlodzaniu lub zapobieganiu oblodzeniu dzięki przepuszczeniu prądu przez taką warstwę. Ciepło wytwarzane przez opór złota jest wystarczające by zapobiec oblodzeniu[52].

Elektronika

Koncentracja swobodnych elektronów w złocie wynosi 5,90×1022 cm−3. Złoto ma bardzo wysokie przewodnictwo elektryczne (tylko srebro i miedź mają wyższe, ale wadą ich jest mniejsza odporność na korozję), przez co wykorzystywane jest w przewodach elektrycznych do zastosowań wymagających wysokich energii. Złoto jako okablowanie stosowane jest w eksperymentach nuklearnych.

Mimo że złoto jest atakowane przez chlor, to jego dobra przewodność i ogólna odporność na utlenianie i korozję w innych środowiskach doprowadziły do jego szerokiego zastosowania w przemyśle jako cienkie pokrycia wszelkiego rodzaju złącz elektrycznych. Złoto jest, na przykład, używane w złączach droższych kabli elektronicznych, takich jak kable audio czy USB.

Chemia przemysłowa

Złoto jest atakowane i rozpuszczane przez zasadowe roztwory cyjanków sodu i potasu, tworząc sól cyjanek złota. Proces ten był wykorzystywany w procesie otrzymywania złota z jego rud (metoda cyjankowa). Roztwór cyjanku złota jest elektrolitem wykorzystywanym w przemysłowej galwanizacji i elektroplastyce złota na powierzchniach metali nieszlachetnych.
Roztwory chlorków złota (kwas chlorozłotowy) są używane do sporządzania koloidalnych roztworów złota poprzez redukcję cytrynianami lub askorbinianami. Chlorek złota i tlenek złota są używane do wyrobu drogocennego czerwonego szkła, które jak koloidalne zawiesiny złota, zawiera jednolitego rozmiaru nanocząsteczki złota[53].

Jedzenie i napoje

  • Złoto może znajdować się jako dodatek w jedzeniu i oznaczane jest wtedy numerem E 175[54].
  • Złoto płatkowe, plasterki lub złoty pył są używane w niektórych pokarmach dla smakoszy, zwłaszcza w słodyczach i napojach będąc składnikiem ozdabiającym je[55].
  • Płatki złota i złoty pył były używane przez szlachtę w średniowiecznej Europie jako dekoracja w pożywieniu i napojach, by zademonstrować bogactwo gospodarza lub przez wiarę, że coś cennego i rzadkiego musi być dobroczynne dla zdrowia.
  • Goldwasser – jest to tradycyjny likier ziołowy produkowany w Gdańsku[56][57]. Istnieją również inne napoje alkoholowe, zawierające płatki złota, których cena za porcję sięga kilku tysięcy dolarów[58][59]. Metaliczne złoto jest obojętne chemicznie w ludzkim organizmie, złoto nie dodaje żadnego smaku, ani wartości odżywczych i opuszcza ciało bez zmian[60].

Medycyna

Związki złota są stosowane jako środek leczniczy w reumatoidalnym zapaleniu stawów (podawane domięśniowo). Hamują one proliferację limfocytów, uwalnianie enzymów lizosomalnych oraz produkcję reaktywnych form tlenu w makrofagach, a także produkcję interleukiny 1. Działaniem ubocznym mogą być: fotosensytywne wysypki, zaburzenia żołądkowe oraz uszkodzenie nerek. Izotop 198Au (czas połowicznego rozpadu – 2,7 dnia) jest używany w terapii niektórych nowotworów, a także w innych chorobach.

Złoto w gospodarce

Cena uncji złota w latach 1960–2013. Linia czarna – cena rzeczywista; linia czerwona – cena w przeliczeniu na wartość nabywczą dolara
Ceny 1 uncji złota w PLN od 1995 roku[61]

Złoto od tysięcy lat ma bardzo dużą wartość, a wraz z rozwojem cywilizacji doceniono jego użyteczność w systemie monetarnym. Według konserwatywnej i libertariańskiej ekonomii obecność złota (lub innego rzadkiego i niepodrabialnego materiału) nie ma wymiaru tylko czysto użytkowego, gdyż z czasem monety złote zostały zastąpione banknotami wypieranymi obecnie przez pieniądz elektroniczny. Złoto ma stanowić zabezpieczenie realnej wartości papierowego pieniądza (taką funkcję pełni dziś około 75% wydobytych zasobów). Do najważniejszych zalet takiej roli złota konserwatyści zaliczają:

  • Żadna władza nie może złota dodrukować czy zmienić poprzez naciski polityczne jego kursu. Ma to zapewnić stabilność gospodarki opartej na zabezpieczeniu w złocie.
  • Od tysięcy lat jego podaż jest stała (ok. 1–2% w skali roku), kształtowana czynnikami niepolitycznymi. Stanowiło w tym czasie czynnik porządkujący i stabilizujący ekonomię.
  • Jest trwałą, niemal niezniszczalną i akceptowalną w każdej epoce i miejscu formą kapitału.

W handlu podstawową jednostką złota jest uncja trojańska (jubilerska), czyli 31,1035 grama. Nazwa trojańska nie pochodzi od Troi, ale od miasta Troyes w północno-wschodniej Francji, w średniowieczu ważnego ośrodka handlowego[62].

Złoto inwestycyjne to obok złotych monet sposób inwestowania. Można je nabyć w formie sztabek o najwyższej próbie 999,9 z renomowanych instytucji[63]. Poza tym jedna trzecia wydobytego złota – jako rezerwa walutowa – jest niedostępna dla inwestorów i od dziesięcioleci pozostaje zamknięta w skarbcach banków centralnych. Według oficjalnych danych to 30,7 tysiąca ton kruszcu[64].

Cenę złota ustala pięć największych instytucji handlujących tym kruszcem podczas London Gold Fixing. Obecnie są to: ScotiaMocatta, Barclays Capital, Deutsche Bank, HSBC i Société Générale[62].

Zobacz też

Uwagi

  1. Podana wartość stanowi przybliżoną standardową względną masę atomową (ang. abridged standard atomic weight) publikowaną wraz ze standardową względną masą atomową, która wynosi 196,966570 ± 0,000004.

Przypisy

  1. a b David R. Lide (red.), CRC Handbook of Chemistry and Physics, wyd. 90, Boca Raton: CRC Press, 2009, s. 4-15, ISBN 978-1-4200-9084-0 (ang.).
  2. Gold (nr 50750) – karta charakterystyki produktu Sigma-Aldrich (Merck KGaA) na obszar Polski. [dostęp 2011-10-05]. (przeczytaj, jeśli nie wyświetla się prawidłowa wersja karty charakterystyki)
  3. Gold (nr 50750) (ang.) – karta charakterystyki produktu Sigma-Aldrich (Merck KGaA) na obszar Stanów Zjednoczonych. [dostęp 2011-10-05]. (przeczytaj, jeśli nie wyświetla się prawidłowa wersja karty charakterystyki)
  4. Adam Bielański: Podstawy chemii nieorganicznej. Wyd. V. Warszawa: PWN, 2002, s. 961. ISBN 83-01-13817-3.
  5. złoto, [w:] Encyklopedia PWN [online] [dostęp 2012-02-27].
  6. Thomas Prohaska i inni, Standard atomic weights of the elements 2021 (IUPAC Technical Report), „Pure and Applied Chemistry”, 94 (5), 2021, s. 573–600, DOI10.1515/pac-2019-0603 (ang.).
  7. a b How much gold has been mined? – World Gold Council (ang.). [dostęp 2018-06-16].
  8. Andy Soos: Gold Mining Boom Increasing Mercury Pollution Risk (ang.). W: Advanced Media Solutions, Inc. [on-line]. Oilprice.com, 2011-01-06. [dostęp 2011-05-28].
  9. World Museum UM: PREHISTORIA SZTUKI – NEOLIT (pol.). [dostęp 2011-05-30]. [zarchiwizowane z tego adresu (2011-02-07)].
  10. Nicholas Reeves: Akhenaten: Egypt’s False Prophet. Thames & Hudson, 2005, s. 69. ISBN 0-500-28552-7.
  11. John Carter: Gold Mining Practices in Ancient Egypt. (ang.). 2010. [dostęp 2011-05-30].
  12. a b c d e f goldfeverprospecting.com -Gold Production Through History (ang.). [dostęp 2011-06-07].
  13. Harold Kirkemo, William L. Newman, Roger P. Ashley: The History OF Gold (ang.). prospectorsparadise.com. [dostęp 2011-05-30].
  14. NOWY TESTAMENT Apokalipsa św. Jana, 21:21 (pol.).
  15. A Case for the World’s First Coin: The Lydian Lion (ang.). [dostęp 2011-05-31].
  16. David Hartill: Cast Chinese Coins. Victoria, Kanada: Trafford Publishing, 2007, s. 79. ISBN 978-1-4120-5466-9. (ang.)
  17. Mansa Musa. blackhistorypages.net. [zarchiwizowane z tego adresu (2006-05-24)]. – Black History Pages [dostęp 2011-06-03] (ang.).
  18. Kingdom of Mali – Primary Source Documents (ang.). W: African studies Center [on-line]. Boston University. [dostęp 2011-06-03].
  19. Frances. Berdan, Patricia Rieff Anawalt: The Codex Mendoz. Berkeley: University of California Press, 1992, s. 151. ISBN 978-0-520-06234-4. (ang.)
  20. Sierra Nevada Virtual Museum [dostęp 2011-06-05] (ang.).
  21. Mark A. Moore: Reed Gold Mine State Historic Site data dostępu = 2011-06-07 (ang.). North Carolina Office of Archives and History, 2006. [dostęp 2011-10-27]. [zarchiwizowane z tego adresu (2008-12-19)].
  22. a b Audi, G. The NUBASE Evaluation of Nuclear and Decay Properties. „Nuclear Physics A”. 729, s. 3–128, 2003. Atomic Mass Data Center. DOI: 10.1016/j.nuclphysa.2003.11.001 (ang.). 
  23. Gold: causes of color (ang.). [dostęp 2011-05-28].
  24. a b Cristian Cretu, Elma van der Lingen. Coloured Gold Alloys. „Gold Bulletin”. 32 (4), s. 115–126, 1999-09-07. World Gold Council. Randburg, RPA: World Gold Council. ISSN 0017-1557 (ang.). [dostęp 2011-05-28]. 
  25. Lloyd Mallan: Suiting up for space: the evolution of the space suit. John Day Co, 1971, s. 216. ISBN 978-0381981501. (ang.)
  26. a b Gold Jewellery Alloys > Utilise Gold. Scientific, industrial and medical applications, products, suppliers from the World Gold Council (ang.). Utilisegold.com, 2000-01-20. [dostęp 2011-05-28].
  27. Pyykkö, Pekka, Desclaux, Jean Paul. Relativity and the periodic system of elements. „Accounts of Chemical Research”. 12 (8), s. 276–281, 1979. DOI: 10.1021/ar50140a002. 
  28. Pyykkö, Pekka. Theoretical Chemistry of Gold. „Angewandte Chemie International Edition”. 43 (34), s. 4412–4456, 2004. DOI: 10.1002/anie.200300624. 
  29. a b c d Hubert Schmidbaur, Cronje, Stephanie; Djordjevic, Bratislav; Schuster, Oliver. Understanding gold chemistry through relativity. „Chemical Physics”. 311 (1–2), s. 151–161, 2005. DOI: 10.1016/j.chemphys.2004.09.023 (ang.). 
  30. StasoSphere: Colored Gold Alloys (ang.). [dostęp 2011-05-28].
  31. Jubiler.pl: Kolorowe złoto (pol.). [dostęp 2011-05-28]. [zarchiwizowane z tego adresu (2011-05-06)].
  32. Victor Lenher. Solubility of gold in certain oxidizing agents. „Journal of the American Chemical Society”, maj 1904 (ang.). 
  33. In-Chul Hwang, Konrad Seppelt Prof. Dr., Gold Pentafluoride: Structure and Fluoride Ion Affinity, „Angewandte Chemie International Edition”, 40 (19), 2001, s. 3690–3693, DOI10.1002/1521-3773(20011001)40:19<3690::AID-ANIE3690>3.0.CO;2-5 (ang.).
  34. General notions of chemistry. Lippincott, Grambo & Co., 1854, s. 280. (ang.)
  35. David Arnett: Supernovae and nucleosynthesis: an investigation of the history of matter, from the big bang to the present. Princeton University Press, 1996. ISBN 0-691-01147-8. (ang.)
  36. M. Willbold, T. Elliott, S. Moorbath: The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment. 2011, s. 195–198, seria: Nature 477.
  37. Environment & Nature News – Bugs grow gold that looks like coral – 28 stycznia 2004. [dostęp 2011-07-02].
  38. Ta bakteria robi złoto! Fakt [dostęp 2012-10-05].
  39. Naukowcy odkryli bakterie produkujące złoto. nt.interia.pl. [zarchiwizowane z tego adresu (2012-10-07)]. Interia.pl [dostęp 2012-10-05].
  40. Kamień filozoficzny istnieje? Bakterie “produkują” czyste złoto Gadżetomania [dostęp 2012-10-05].
  41. K. Kenison Falkner, J Edmond. Gold in seawater. „Earth and Planetary Science Letters”. 98 (2), s. 208–221, 1990. DOI: 10.1016/0012-821X(90)90060-B. Bibcode1990E&PSL..98..208K. 
  42. a b Dan Plazak: A hole in the ground with a liar at the top: fraud and deceit in the golden age of American minin. Salt Lake City: University of Utah Press, 2006. ISBN 0-87480-840-5. (ang.)
  43. F. Haber. Das Gold im Meerwasser. „Zeitschrift für Angewandte Chemie”. 40 (11), s. 303–314, 1927. DOI: 10.1002/ange.19270401103 (niem.). 
  44. J.B. McHugh. Concentration of gold in natural waters. „Journal of Geochemical Exploration”. 30 (1–3), s. 85–94, 1988. DOI: 10.1016/0375-6742(88)90051-9 (ang.). 
  45. Mikulski S.Z., 2015: Mapy obszarów perspektywicznych wystąpień rud metali w Polsce w skali 1:200 000 – rudy złota typu żyłowego i metasomatycznego towarzyszące mineralizacji siarczkowej na Dolnym i Górnym Śląsku oraz w Małopolsce (południowa Polska). Przegląd Geologiczny, nr 63 (9), s. 547.
  46. KGHM wyprodukował w tym roku ponad 3,1 tony złota oraz ponad tysiąc ton srebra – Hutnictwo, hutnictwo.wnp.pl [dostęp 2018-09-15] (pol.).
  47. Szyszka G., 2018: Głogów. Tutaj gorączka złota i srebra trwa już 25 lat. Kruszec dla przemysłu, jubilera i banku. Gazeta Wrocławska, 26 IX, s. 05.
  48. Mateusz Kudła, Czy złoto z Dolnego Śląska zawojuje świat? (pol.). Fakty TVN, marzec 2014. [dostęp 2014-03-29]. [zarchiwizowane z tego adresu (2014-03-30)].
  49. Brook Larmer. Cena Złota. „National Geographic”. 1/2009. s. 56–79. ISSN 1507-5966. 
  50. Mineral Commodity Summaries 2020 (ang.). W: USGS Minerals Information: Gold [on-line]. U.S. Geological Survey. [dostęp 2020-12-18].
  51. McLaren F1. SuperCars.net. [dostęp 2011-10-027].zły zapis daty dostępu
  52. World Gold Council – Uses. [dostęp 2011-10-27].
  53. Colored glass chemistry. [dostęp 2011-10-22].
  54. Current EU approved additives and their E Numbers (ang.). Food Standards Agency, UK, 27 lipca 2007. [dostęp 2011-07-06].
  55. The Food Dictionary: Varak (ang.). Barron’s Educational Services, Inc, 1995. [dostęp 2011-07-06]. [zarchiwizowane z tego adresu (2006-05-23)].
  56. Danzig. W: Karl Baedeker: Deutschland nebst Theilen der angrenzenden Länder. Karl Baedeker, 1865. (niem.)
  57. www.goldwasser.com.pl: Goldwasser.com: Historia (pol.). [dostęp 2011-07-06]. [zarchiwizowane z tego adresu (2011-06-26)].
  58. dailymail.co.uk: World’s most expensive cocktail launched at L35,000 a glass (ang.). 2007-12-08. [dostęp 2011-07-06].
  59. Susan Stapleton: $1,000 & Up: The Most Expensive Drinks in Las Vegas (ang.). 2011-04-08. [dostęp 2011-07-06].
  60. The Many Uses of Gold (ang.). [dostęp 2011-07-06].
  61. Cena złota I Złoto – kurs i notowania – Investing.com, Investing.com Polska [dostęp 2019-03-21] (pol.).
  62. a b Piotr Stanisławski: 10 rzeczy, których nie wiesz o... złocie (pol.). W: Przekrój [on-line]. Wirtualna Polska, 27 października 2008. [dostęp 2008-10-28].
  63. Sztabki złota do kupienia w oddziałach Alior Banku (pol.). [dostęp 2011-10-19].
  64. Kto ma najwięcej złota? w PRNews.pl (Dostęp: 2011-11-21).

Star of life.svg Przeczytaj ostrzeżenie dotyczące informacji medycznych i pokrewnych zamieszczonych w Wikipedii.

Media użyte na tej stronie

NFPA 704.svg
The "fire diamond" as defined by NFPA 704. It is a blank template, so as to facilitate populating it using CSS.
Flag of the United States.svg
The flag of Navassa Island is simply the United States flag. It does not have a "local" flag or "unofficial" flag; it is an uninhabited island. The version with a profile view was based on Flags of the World and as a fictional design has no status warranting a place on any Wiki. It was made up by a random person with no connection to the island, it has never flown on the island, and it has never received any sort of recognition or validation by any authority. The person quoted on that page has no authority to bestow a flag, "unofficial" or otherwise, on the island.
Flag of Indonesia.svg
bendera Indonesia
Flag of Chile.svg
Łatwo można dodać ramkę naokoło tej grafiki
Star of life.svg

The Star of Life, medical symbol used on some ambulances.

Star of Life was designed/created by a National Highway Traffic Safety Administration (US Gov) employee and is thus in the public domain.
Gold price in USD.png
Historical gold price in USD and inflation adjusted gold price in USD. The chart shows Silver Thursday event as a peak in 1980 when Hunt brothers drove up the price of silver through speculations and after it they lost about a billion dollars.
Small gold nugget 5mm dia and corresponding foil surface of half sq meter.jpg
Autor: PHGCOM, Licencja: CC BY-SA 3.0
Small gold nugget 5mm dia and corresponding gold foil surface of half sq_meter
Toi 250kg gold bar.jpg
Autor: PHGCOM, Licencja: CC BY-SA 3.0
A 250,000gram gold bar in the Toi gold mine
Gold-price-PLN.png
Autor: www.uncja.com, Licencja: FAL
Ceny 1 uncji złota w PLN od 1 stycznia 1995 do teraz
Gold 30g for a 860kg rock.jpg
Autor: PHGCOM, Licencja: CC BY-SA 3.0
Gold 30 g for a 860 kg rock, Toi gold mine.
Stringer156 nugget.jpg
Mojave Nugget, a gold nugget weighing 156 ounces. From the Stringer district, Kern County, California.
Gold-crystals.jpg
Autor: Alchemist-hp (talk) www.pse-mendelejew.de, Licencja: CC BY-SA 3.0 de
Kryształy złota o czystości 99,99% wytworzone metodą reakcji transportu chemicznego w atmosferze chloru.
Mask of Tutankhamun 2003-12-07.jpg
Autor: Bjørn Christian Tørrissen, Licencja: CC BY-SA 3.0
Tuthankamun's famous burial mask, on display in the Egyptian Museum in Cairo.
MocheGoldNecklace.jpg
(c) Pattych z angielskiej Wikipedii, CC BY-SA 3.0
Moche gold necklace. Larco Museum Collection. Lima-Peru
Cubic-face-centered.svg
Autor: Original PNGs by Daniel Mayer and DrBob, traced in Inkscape by User:Stannered, Licencja: CC-BY-SA-3.0
Face-centered cubic crystal structure
Jason Pelias Louvre K127.jpg
Jason bringing Pelias the Golden Fleece; a winged victory prepares to crown him with a wreath. Side A from an Apulian red-figure calyx crater.
Ag-Au-Cu-colours-english.svg
Autor: Original image: Metallos, Licencja: CC BY-SA 4.0
Ternary plot of approximate colours of Ag–Au–Cu alloys, which are commonly used in jewellery making. (Captions in English)
GoldinPyriteDrainage acide.JPG
(c) Matt Affolter of a sample from Erich Peterson at en.wikipedia, CC BY-SA 3.0
Disseminated gold, left behind after a cubic crystal of pyrite dissolved away. Note "corner" of former cube in center of rock, with small gold pieces lining the sides of the corner.
Gold spectrum visible.png
Autor: McZusatz (talk), Licencja: CC0
Gold spectrum; 400 nm - 700 nm
Berliner Goldhut detail.jpg

Berliner Goldhut“, detail; Fund ohne Fundort, 1996 aus dem Kunsthandel erworben; datiert in die ausgehende Bronzezeit, ca. 1000-800 v. Chr.


Collection: Museum für Vor- und Frühgeschichte Berlin